Dissolved molecular hydrogen (H2) in Peritoneal Dialysis (PD) solutions preserves mesothelial cells and peritoneal membrane integrity
نویسندگان
چکیده
BACKGROUND Peritoneal dialysis (PD) is used as renal replacement therapy in patients with end-stage kidney disease. However, peritoneal membrane failure remains problematic and constitutes a critical cause of PD discontinuation. Recent studies have revealed the unique biological action of molecular hydrogen (H2) as an anti-oxidant, which ameliorates tissue injury. In the present study, we aimed to examine the effects of H2 on the peritoneal membrane of experimental PD rats. METHOD Eight-week-old male Sprague-Dawley rats were divided into the following groups (n = 8-11 each) receiving different test solutions: control group (no treatment), PD group (commercially available lactate-based neutral 2.5% glucose PD solution), and H2PD group (PD solution with dissolved H2 at 400 ppb). Furthermore, the influence of iron (FeCl3: 5 μM: inducer of oxidative cellular injury) in the respective PD solutions was also examined (Fe-PD and Fe-H2PD groups). The H2PD solution was manufactured by bathing a PD bag in H2-oversaturated water created by electrolysis of the water. Twenty mL of the test solutions were intraperitoneally injected once a day for 10 days. Parietal peritoneum samples and cells collected from the peritoneal surface following treatment with trypsin were subjected to analysis. RESULTS In the PD group as compared to controls, a mild but significant sub-mesothelial thickening was observed, with increase in the number of cells in the peritoneal surface tissue that were positive for apoptosis, proliferation and vimentin, as seen by immunostaining. There were significantly fewer of such changes in the H2PD group, in which there was a dominant presence of M2 (CD163+) macrophages in the peritoneum. The Fe-PD group showed a significant loss of mesothelial cells with sub-mesothelial thickening, these changes being ameliorated in the Fe-H2PD group. CONCLUSION H2-dissolved PD solutions could preserve mesothelial cells and peritoneal membrane integrity in PD rats. Clinical application of H2 in PD could be a novel strategy for protection of peritoneal tissue during PD treatment.
منابع مشابه
Membrane nanotubes between peritoneal mesothelial cells: functional connectivity and crucial participation during inflammatory reactions
Peritoneal dialysis (PD) has attained increased relevance as continuous renal replacement therapy over the past years. During this treatment, the peritoneum functions as dialysis membrane to eliminate diffusible waste products from the blood-stream. Success and efficacy of this treatment is dependent on the integrity of the peritoneal membrane. Chronic inflammatory conditions within the periton...
متن کاملمقایسه سلولهای مزانشیمی مغز استخوان و سلولهای مزوتلیومی مایع سروزی ازنظر میزان بیان مولکولهای کمپلکس سازگاری نسجی اصلی (MHC)
Abstract Background: Mesothelium is composed of a single layer of mesothelial cells attached to a thin basement membrane supported by subserosal connective tissue it plays an important role in homeostasis, wound healing, fluid transport and inflammation. The introduction of peritoneal dialysis (PD) as a modality of renal replacement therapy has provoked much interest in the biology of perito...
متن کاملMembrane Biology During Peritoneal Dialysis
Peritoneal dialysis (PD) is a life-supporting renal replacement therapy used by 10-15% of patients with end-stage renal failure worldwide. The success of long-term PD depends entirely on the longevity and integrity of the peritoneal membrane. The peritoneum is covered by a mesothelial monolayer beneath which is a basement membrane and submesothelial layer that contains collagen, fibroblasts, ad...
متن کاملTransperitoneal administration of dissolved hydrogen for peritoneal dialysis patients: a novel approach to suppress oxidative stress in the peritoneal cavity
BACKGROUND Oxidative stress (OS) related to glucose degradation products such as methylglyoxal is reportedly associated with peritoneal deterioration in patients treated with peritoneal dialysis (PD). However, the use of general antioxidant agents is limited due to their harmful effects. This study aimed to clarify the influence of the novel antioxidant molecular hydrogen (H2) on peritoneal OS ...
متن کاملPathophysiology of the Peritoneal Membrane during Peritoneal Dialysis: The Role of Hyaluronan
During peritoneal dialysis (PD), constant exposure of mesothelial cells to bioincompatible PD solutions results in the denudation of the mesothelial monolayer and impairment of mesothelial cell function. Hyaluronan, a major component of extracellular matrices, is synthesized by mesothelial cells and contributes to remesothelialization, maintenance of cell phenotype, and tissue remodeling and pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 18 شماره
صفحات -
تاریخ انتشار 2017